Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell
نویسندگان
چکیده
منابع مشابه
Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell
Reversible operation of a microtubular solid oxide fuel cell SOFC with high electrochemical efficiency is reported. These devices can ideally produce hydrogen from electricity and steam solid oxide electrolyser SOE and then use the stored hydrogen to generate electricity and heat SOFC , acting as a storage device for the electrical energy. A fuel-electrode-supported Ni–yttriastabilized zirconia...
متن کامل2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis
Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computational fluid dynamics (CFD) model describi...
متن کاملA bifunctional solid oxide electrolysis cell for simultaneous CO2 utilization and synthesis gas production.
We hereby report on a pioneering and inspiring solid oxide cell which, assisted by natural gas, utilizes a bifunctional electrolysis cell configuration to effectively consume CO2 to produce CO at the cathode side and simultaneously synthesize highly valuable syngas (mixture of CO and H2) at the anode side via a one-step green process.
متن کاملMechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.
Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-...
متن کاملThe Energy and Exergy Analysis of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis with Optimized Water Path (RESEARCH NOTE)
In this research, solar-drived integrated Hydrogen production (HP) using high-temperature steam electrolysis (HTSE) is thermodynamically evaluated. This system includes an organic Rankine cycle (ORC), Rankine cycle, Brayton cycle, solar tower, and High Temperature Steam Electrolysis (HTSE). Solar energy supplies thermal energy. This heat source is applied for generating power. This energy is us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nuclear Science and Technology
سال: 2010
ISSN: 0022-3131
DOI: 10.3327/jnst.47.599